

实验动物科技资讯

2023 年第 26 期 总 363 期

投稿邮箱: dongqinghua@nifdc.org.cn

每期刊载: https://www.lascn.net/

2023年10月19日星期四

2023 (第六届) 毒性测试替代方法与转化毒理学 (国际) 学术研讨会

毒性测试替代方法与转化毒理学是下一代风险评估(NGRA)的核心技术与测试策略。越来越多的体外和预测毒理学等非动物测试方法在化妆品、食品、药品和化学品等产品安全性评价与风险评估中得到应用,并得到法规和管理的认可。为了促进我国毒性测试替代方法与转化毒理学的发展和应用推广,增进科技工作者、企业和管理人员之间的沟通以及国内外学术交流,2023年9月16-19日在湖南长沙召开了2023(第六届)毒性测试替代方法与转化毒理学(国际)学术研讨会。

主办单位是中国毒理学会毒理学替代法与转化毒理学专业委员会和中国环境诱变剂学会毒性测试与替代方法专业委员会。以下是此次会议的论文目录。

我们可以从会议论文集目录看出,目前我国非动物的毒性测试替代方法与转化毒理学的研究水平和应用 进展。从而也提示我们,准确理解和正确把握 3R 基础理论,扎实推进实验动物福利技术研究,是从根本上解 决在科学研究和产品质量评价等领域中实验动物福利伦理有关问题的有效路径。

2023 毒性测试替代方法与转化毒理学 (国际) 学术研讨会

会议论文集

目录 (CONTENTS)

大	会报告(Plenary Talks)	1
1	有害结局路径(AOP)框架与毒理学研究的科学问题	彭双清 1
2	基于 TRAEC 策略的环境化学物综合风险评估	夏彦恺 3
3	毒理学关注阈值(TTC)及其在化学物风险评估中的应用	杨杏芬 5
4	Current Progress with NAMs in Next Generation Risk Assessment (NGRA) and	nd opportunities
	in chemical registration	Vestmoreland 7
5	新一代体外生理组织:物质传输、共培养、三维培养和微型生理系统	Yasuyuki Sakai 8
6	基于精原细胞的表观遗传标记物建立父源性疾病的早期筛查和预警技术	汪晖 10
7	我国化妆品安全评价替代方法技术应用及发展	罗飞亚 12
8	人工智能(AI)制药的发展与挑战	任峰 13
9	基于现代生物技术的化学毒物毒性评价新实验模型	王永安 14
10	替代毒理学模型在天然原料安全物质限定研究中的探索	尚靖 15
11	体外替代技术在药物发现中的应用	毛卓 17
12	安全设计(Safe by Design)策略及在发育毒性早期预测中的案例分析	
13	靶点抗肿瘤药物的毒性起始机制与干预策略研究	何俏军 20
14	下一代风险评估(NGRA)策略及其应用案例分析	邢泰然 22
15	人源心脏类器官构建心脏药物毒性评价体系	张冬卉 24
16	基于 Nrf2-物质代谢-细胞死亡体系探索药物性肝损伤(DILI)的转化毒理学研究	5颜苗 26
17	Latest activities and future directions of JSAAE for Asian Federation toward 3Rs H	ajime Kojima 27
18	基于代谢组学的毒理学研究策略及其应用	胡泽平 29
分	会场一: 毒性测试新技术方法	30
(Session I:Toxicity Testing New Approach Methodologies(NAMs)) 30
19	Origins of Bistability and Circadian Oscillation of Hydrogen Peroxide and Hy	peroxidation of
	Peroxiredoxin	Shengnan Liu 30
20	基于生物 3D 打印的体外仿生组织构建及其药毒评价	庞媛 32
21	In vitro to in vivo extrapolation for predicting human equivalent dose of phe	nolic endocrine
	disrupting chemical	Ruili Xie 33
22	肺芯片在环境污染物暴露毒性评价中的应用	张敏 36
23	Machine Learning-Assisted High-Content Imaging Analysis of 3D MCF7 N	Aicrotissues for
	Estrogenic Effect Prediction	Hui Li 37

20	23 毒性测试替代方法与转化毒理学(国际)学术研讨会	会议论文集
24	吸入毒性相关有害结局路径 AOP 的研究进展	张明明 42
25	微核组学智能化检测系统开发及在铬酸盐暴露生物监测中的应用	胡贵平 44
26	基于生理药代动力学模型预测药物肝毒性研究进展	蒋品 45
27	化学品血浆未结合分数的定量构效关系	杨静媛 46
28	交叉参照评估的应用——案例介绍	Wang, Ying 48
29	基于人诱导多能干细胞定向分化的发育与靶器官毒性预测研究	高幸幸 50
30	利用 H295R 细胞系筛选和检测内分泌干扰物	李承娟 52
31	基于三维仿生肺泡模型的体外毒性测试及病毒感染研究	周畅 54
32	用稳定转染人雌激素受体α的 hERα-HeLa-9903 细胞系检测化合物雌激素活	5性的转录激活
	试验方法探索	蔡玉婷 56
33	肺器官芯片及其在毒理学评价中的应用	董濡铭 58
34	MXene 电化学传感器检测多种含氧多环芳烃对 HFF-1 细胞的毒性	周实 59
35	冈田酸诱导的阿尔兹海默症大脑类器官模型的建立及抗氧化肽 WLP 保护作用码	开究
		陈琪琪 61
36	基于蒙特卡洛模拟量化 All Ages Led Model (AALM) 预测广东省学龄前儿童	血铅水平
		胡晶 62
37	将毒理学大数据应用于毒性测试的新方法	靳远 63
38	Prediction Method for Acute Toxicity based on Deep Learning	Xiao-ting Ren 64
39	, , , , , , , , , , , ,	-
	H	uang zhihang 66
40	生理药代动力学模型在食品安全风险评估中的应用	张少聪 68
41	Pharmacokinetic/Toxicokinetic modeling and simulation for toxicology st	
	protection products research and development	Yafan Wang 69
42	用于训练植物毒性化合物的机器学习分类器数据集的整合初探	71
43	基于仿生肺芯片的烟气气溶胶吸入毒性研究	
44	胎盘芯片模型的构建及其在生殖毒性评估中的应用	曹荣凯 73
45	基于熵值量化毒性通路扰动预测药物性肝毒性	
46	The same state of the same sta	-
	mammals: A systematic review and adverse outcome pathway analysis	
47	实时无标记细胞分析系统在海洋生物毒素检测中的应用	晏婷 77
48	高内涵筛选技术在表遗传活性药物发现中的应用	
49	基于蒙特卡洛模拟的 All Ages Lead 模型推导铅的健康指导值	
50	, ,	-
	cell-derived cardiomyocytes (hiPSC-CMs)	
51	全氟烷基物质(PFAS)长期低剂量混合暴露诱导人大脑类器官阿尔兹海默	症样神经毒性.

2023 毒性测试替代方法与转化毒理学(国际)学术研讨会 会议论文集		
52	A linked liver- and heart-organoids on-a-chip for chemical-induced cardiotoxicity testing	
53	Mode of Action exploration of female reproductive toxicity induced by bisphenol S using	
	human normal ovarian epithelial cells through ERβ-MAPK signaling pathway Mengqi Yu 84	
54	一种仿生吸烟呼吸机器人的设计及构建华辰凤 86	
55	基于 3D 人气道类器官的轮胎磨损颗粒吸入毒性研究 张婉君 87	
分	会场二:替代方法的发展与应用88	
(S	ession II:Development and Application of Alternatives Assessment)88	
56	创新药物成药性研究中的体外替代技术曾宪成88	
57	单细胞全外显子测序及在肿瘤检测中的应用何牮 90	
58	基于干细胞增殖和多向分化模型的单一/复合暴露毒性评估和机制解析 秦会 91	
59	High-Throughput 3D Microfluidic Modeling of Drug-Induced Liver Injury Powered by	
	Image-Based AI Toxicity Profiling Haiqing Bai 92	
60	毒性测试新方法在化妆品植物原料评估中的应用符佳佳 93	
61	ICH S5(R3)背景下生殖与发育毒性替代法的机遇与挑战	
62	单细胞全外显子测序技术及在肿瘤检测中的应用 Jian He 95	
63	体外重建模型在化妆品刺激性评价中的应用何立成96	
64	$\label{lem:condition} \mbox{De novo understanding of environmental chemicals induced-healthy adverse outcome: NAFLD}$	
	caused by PFOA and PFOS	
65	聚苯乙烯微塑料诱发肝毒性机制及内源性 H2S 保护作用李思文 98	
66	联合应用传统全胚胎培养模型与代谢后血清全胚胎培养探索矮壮素对胚胎生长发育的作	
	用机制巴音达拉•夏格德尔 99	
67	Evaluation of Osteopontin as an Early Indicator of Nephrotoxicity in Human Renal Proximal	
	Tubule Cells	
68	氨基酸衍生物结合试验方法的转化与实验室验证	
69	饮用水新型消毒副产物单卤代酰胺对斑马鱼胚胎的发育毒性研究丁新良 102	
70	孕期接触双酚 A、双酚 S、双酚 F与出生结局之间的关系:系统性综述与 $Meta$ 分析 付雨 103	
71	体外重建皮肤模型微核试验方法的建立	
72	Establishment and characterization of a novel human-derived choroid plexus papilloma cell	
	line (hCPP)	
73	Impact of Food Matrices on the Characteristics and Cellular Toxicities of Ingested Nanoplastics	
	in a Simulated Digestive TractZhiming Li 108	

202	23 毒性测试替代方法与转化毒理学(国际)学术研讨会	会议论文集
74	基于鸡胚的生命极早期吸入染毒模型	龚新贤 110
75	HepaRG 细胞模型在 APAP 肝毒性评价中的应用研究	金虹 112
76	基于食品添加剂栀子黄色素重复暴露对体外肝细胞毒性的评价研究	
77	从药品及化妆品监管科学角度浅议器官芯片的应用及发展趋势	林铌 114
78	肝-肾双器官芯片模型的构建及其在联合用药的药物安全性评价中的应用	林铌 115
79	转基因斑马鱼模型在新兴环境污染物毒性评价中的应用	宗尤佳 117
80	组蛋白表观遗传修饰液质检测技术在化学毒剂暴露表征中的应用	史钦鋆 118
81	Unveiling the Shape Effects of Green Synthetized Ag Nanomaterials on Dermocon	npatibility by
	Multi-analytical Approaches	njing Xie 119
82	基于 AOP 框架下体外皮肤致敏性替代试验方法的研究进展	涂世盛 121
83	基于生理的药代动力学模型(PBPK)在纳米材料毒性测试风险评估中的应用。	杨晓雅 122
84	纳米材料致线粒体生物发生功能障碍及其机制	徐畅 123
85	肝毒性评价体外替代模型研究进展	万思雨 124
86	新技术方法在药物毒理学评价中的应用	王春明 125
87	基于肠道菌群改良的体外胃肠消化模型进行大米中镉的生物可及性和生物利	用度评价研
	究	.徐飞飞127
88	Internal Threshold of Toxicological Concern (iTTC) Progress John (J	un) Yang 128
89	不同波段可见光对秀丽隐杆线虫的毒 <mark>截图(Alt + A)</mark> 初探	张健 129
90	利用二维和三维细胞模型评估典型污水处理工艺排水的呼吸健康效应	牛雨欣 130
91	皮肤致敏替代测试方法的研究进展	赵晓晗 131
92	化妆品植物提取物的安全评估策略	朱婷婷 132
Л		400
ח'	会场三:毒性机制与预测毒理学	133
(S	ession III:Toxicity Mechanism and Risk Assessment)	133
93	早衰及其相关分泌表型在重金属六价铬毒性效应中的作用	肖芳 133
94	DRP1介导线粒体自噬在纳米二氧化硅致小鼠海马细胞凋亡中的作用	. 田甜甜 134
95	磷酸三苯酯和羟基代谢产物通过激活 PPARs 通路和内质网应激诱导 HepG2 细	胞脂质代谢
	紊乱	安静 135
96	Effects of low dose radiation on behavior rhythm of zebrafish (Danio rerio)	赵维超 136
97	孕期暴露 PM2.5 诱导雄性子代支持细胞凋亡干扰精子生成的机制研究	. 任利华 137
98	The role of intestinal microorganisms in acute arsenic poisoning and potential	intervention
	strategies	陈倩 138
99	V 类神经性毒剂的天然与重组胆碱酯酶动力学比较研究	李克新 139
100	糖代谢中间体丙酮酸在阿霉素所致心脏毒性中的作用及机制研究	阳媛颖 140

2023 毒性测试香代方法与转化毒理学(国际)学术研讨会	会议论文集
101去甲基化酶 FTO 蛋白 SUMO 化修饰异常在砷诱发 DNA 氧化损伤中的作用	张弘扬 141
102中药 HW 提取物 ST-1 体外肝毒性评价及机制探索	李婕 142
103V 类神经性毒剂的天然与重组胆碱酯酶动力学比较研究	李克新 143
104瑞戈非尼通过抑制 EphA2 磷酸化调控 ERK/MDM2/p53 轴致肝损伤的作用及机	制研究
	武文通 143
105 氯喹通过自噬非依赖的方式干预尼洛替尼肾脏毒性的作用及机制研究	黄祥良 145
106Effects of exposure to Acetamiprid on DNA Methylation and Transcriptomic	s of Human
Mesenchymal Stem Cells	李明翰 146
107全氟及多氟烷基化合物 PFASs 暴露与非酒精性脂肪性肝病的人群毒理学关联	程文栎 148
108红茶提取物茶黄素对非酒精性脂肪性肝病小鼠的干预效应和机制	周铖 149
109人群全氟和多氟烷基化合物内暴露与抗衰老蛋白 α -Klotho 的关联	李敏 150
1102-乙酰基-4-四羟基丁基咪唑(THI)引起的外周血淋巴细胞数减少作用及其对	
响	原黎兰 151
111环境浓度的短链氯化石蜡对小胶质细胞活化及代谢的影响	李佳仪 153
112Inhibition of AMPK (Ser485/491) Phosphorylation by Crizotinib Induces Card	iotoxicity via
Perturbing Autophagosome-Lysosome FusionZizh	neng Gao 154
113基于人胚胎干细胞构建神经分化模型对双酚 S 神经发育毒性及其机制研究	郭婉晴 155
114矮壮素对小鼠精子发生及表观遗传重塑的影响	郭菀芊 156
115双酚 S 染毒对人胚胎干细胞心肌分化模型的影响及其机制研究	周泳汝 158
116 Molecular mechanism of the adverse effects of cadmium on neural stem ${\sf c}$	
multi-omics analysis	常秀丽 159
117基于多参数高内涵分析的鹅膏毒肽肝细胞毒性表型研究	龚梦强 161
118氮芥暴露 DNA 加合物形成特点及鉴定研究	王朝霞 162
119 Assessing botanicals used in cosmetics with the fraction of concern (FoC) approximately $\frac{1}{2}$	ich: Two case
studies to validate this method with regard to repeated dose toxicity data gaps. \dots	
Viv	ian Poon 163
120 Molecular mechanism for mir-38 in regulating transgenerational toxicity of na	
Caenorhabditis elegans	
121饲料中典型农药污染对肉鸡健康的影响及潜在食品安全风险评估	
122青春期矮壮素暴露对大鼠睾丸转录组学的影响	
123 ALDH3A1 通过 IL-6/STAT3 信号通路激活 GMA 诱导的恶性转化 16HBE 细胞上皮	2间充质转化
124ALDH3A1 activates GMA-induced malignant transformation of epithelial	mesenchymal
transition in 16HBE cells via the IL-6/STAT3 signalling pathwayWang	
125麦角硫因通过 TGF-β/Smad 信号通路对小鼠肝纤维化的保护作用	谢正荟 171

2023 毒性测试替代方法与转化毒理学(国际)学术研讨会	会议论文集
126基于转录组学的抗结核药物肝损伤早期生物标志物研究	李晨 172
127恩镰孢菌素通过 Ras/PI3K/AKT 信号通路拮抗脱氧雪腐镰刀菌烯醇的肠道毒	性汤璐瑶 173
128FXR 和 AHR 介导马兜铃酸致肝损伤的毒作用模式研究:从核受体角度	马玉梅 174
129 Phenylarsine Oxide Can Induce Degradation of PLZF-RARα Variant Fusion Pr	otein of Acute
Promyelocytic Leukemia	刘永琴 176
130 Balance between the toxicity and anticancer activity of arsenic trioxide in trea	tment of acute
promyelocytic leukemia	严星祎 177
131基于干细胞生物毒性测试评估二级、三级污水处理厂和人工湿地排水的综合毒	性 杨婧 178
132长期食源性镉暴露破坏肠道稳态进而促进阿尔茨海默病的作用和机制研究	郭宝 180
133 An aqueous extract of Prunella vulgaris L. attenuates Cd-induced kidney injur	y via inhibiting
NLRP3 inflammasome activation in vivo	Ziyin Li 181
134An integrated strategy for predicting and identifying toxicological targets of	small molecule
compound: taking anthraquinone as an example	Cai hongxia 182
135稀土元素镧代谢动力学及对血液元素谱的影响	林秀琴 184
136土荆芥的毒性与毒性机制研究进展	刘韵 185
137利用二维和三维细胞模型评估典型污水处理工艺排水的呼吸健康效应	牛雨欣 186
138m6A 去甲基化酶 FTO 在砷暴露诱发突触囊泡神经递质释放障碍中的调控作用码	
	柴小琴 187
139m6A 修饰去甲基化酶 FTO 在应激颗粒形成过程中的调控作用研究	张云霄 188
140m6A 去甲基化酶 FTO 调控铁自噬在砷诱发小胶质细胞活化中的作用	
141探讨抗生素暴露对锌离子体内代谢的影响	张弘扬 190
142 m6A 去甲基化酶 FTO 调控肠道微环境紊乱在砷诱发 神经行为异常中的作用研	究陈若楠 191
143 m6A 去甲基化酶 FTO 介导氧化损伤在砷诱发学习记忆功能损害中的作用	李仁杰 192
144IUGR 通过 ABCG1 减少海马星形胶质细胞胆固醇外排导致神经元突触损伤和	神经行为改变
1454-壬基酚通过调控铁死亡参与宫颈癌发生发展的分子机制	张兴 195
146大黄酸通过 AHR 调控大鼠肝脏免疫的比较研究	胡丹丹 196
147己酮可可碱修复内皮糖萼在氯气致急性肺损伤中的分子机制研究	赵晨茜 198
148 DILI- Predictor:整合药理毒理特征预测药物诱导肝损伤的新策略	
149结合转录组学和网络药理学探讨冬凌草甲素通过 MMP3 缓解阿霉素所致心	脏毒性的机制
150基于网络药理学和转录组学探讨穿心莲内酯减轻阿霉素心脏毒性的机制	刘飒 203
151 ROS savaging activity of fucox anthin-loaded nanofibers fabricated by microfluiding fabricated fabric	
	李佳璇 205
152 Effects of toluene on protein expression profiles of OHC rat cochlear cells	Liao Hui 206

2023 每性侧似皆几万法与将化母座子(国际)子不听以云 云汉化义杲
153基于生物信息分析重金属镉导致肝损伤及肝癌发展的毒性分子机制研究建宇伦 207
154Nod-like receptor protein 3 inflammasome activation contributes to chronic NaAsO2
exposure-induced hepatocyte pyroptosis and liver dysfunction in SD ratsYing Jin 208
155经典 Wnt 信号通路对镉致神经干细胞增殖抑制的影响
156柴油废气颗粒物通过下调 miR-466d-3p 影响 Wnt 信号通路损伤血脑屏障通透性的体外实验
研究
157基于 G 蛋白偶联雌激素受体通路探讨三氯生和三氯卡班诱导乳腺癌的风险及机制
曹林英 212
158 Differential impact of intermittent versus continuous treatment with clozapine on fatty acid
metabolism in the brain of an MK-801-induced mouse model of schizophrenia焦世蒙 213
159The involvement of PGRMC1 signaling in cognitive impairment induced by long-term clozapine
treatment in rats曹婷 214
160 PM2.5 有机组分暴露引起人支气管上皮细胞铁死亡 王盟盟 215
161自噬在肉桂醛诱导的 THP-1 细胞活化中的作用研究 王瑞 216
162线粒体相关内质网膜介导 TOCP 诱导人神经母细胞瘤细胞自噬及钙稳态间的紧密联系
胡泽慧 217
163 Identifying piRNAs that regulate BaP-induced lung injuries: a bottom-up approach from toxicity
pathway investigation to animal validationQinkai Lei 219
164SiO2 dust induces inflammation and pulmonary fibrosis in rat lungs through activation of
ASMase/ceramide pathway黄芳财 220
165 PI3K/Akt/mTOR 通路介导巨噬细胞自噬影响矽尘致肺成纤维细胞表型转化
166苯并(a)芘介导 H2AK9me 水平下降引起细胞膜表面张力失调双向调控肺癌 EMT-MET 作用
李漫晴 222
167PCBP1 的 S-谷胱甘肽化修饰介导肺癌细胞铁死亡敏感性的体外试验评价研究 李婷玉 223
168靶向 p-NLRP3S295 的胞内单克隆抗体干预肝脏代谢炎症损伤的策略探索 吴佳桑 224
169线粒体代谢紊乱介导四溴双酚 A 暴露致斑马鱼及人内皮细胞血管生成障碍曾湘玉 225
170T-2 毒素致心肌铁死亡的作用及机制研究张丽 227
171基于 PGRMC1 探讨奥氮平及高脂饮食联用所致非酒精性脂肪肝的机制曹婷 228
172 Trip to lide induces liver injury by promoting ferroptos is via suppressing Nrf2 activation
173 Mechanistic study of hepatotoxicity due to ferroptosis induced by crizotinib via Stat1/Nrf2
pathway 郭林 232
174 Ambient NO2 hinders neutrophil extracellular trap formation in rats: Assessment of the role of
neutrophil autophagyShuzi Ye 234

2023 毒性测试替代方法与转化毒理学(国际)学术研讨会	会议论文集
分会场四:临床毒理学研究与转化	235
175昼夜节律与脂质代谢	吴宝剑 235
176HDL 在阿霉素所致心脏细胞脂噬性损伤中的作用	苏素文 236
177基于肝脏转运体定位的雌激素所致胆汁淤积毒理机制及转化研究	张程亮 237
178三氧化二砷及其代谢产物的毒性机制和防治策略	海鑫 238
179铁死亡在药物所致心脏毒性中的功能与机制研究	方学贤 241
180 奥氮平导致的药物性肝损伤: 由肠道微生物群介导的潜在机制	陈慧 242
181环状 RNA Gtdc1 调控 SRSF1-Fn1 信号轴介导孕期强的松暴露所致子代骨关	节炎易感
	刘亮 243
182重庆市居民元素类污染物膳食累积风险评估	陈佳辉 244
183黄酮锌致畸作用的研究	高珉之 245
184定量有害结局路径在风险评估中的研究进展	李旻涛 246
185 Shortened lifespan and healthspan induced by Atmospheric PM2.5 in nematode	sZinan Li 247
186UGT1A1 polymorphism plus baseline plasma bilirubin levels in predicti	ng the risk of
antipsychotic-induced dyslipidemia in schizophrenia patients Ch	enquan Lin 249
187 Advances and prospects of machine learning in toxicity prediction	Yutong Liu 251
188儿童药源性血小板减少信号挖掘及毒性评价研究	聂晓璐 253
189基于代谢组学研究水合氯醛活化 THP-1 细胞代谢通路的影响	吴凡 257
190肠道微生物在赖氨酸限制饮食改善肥胖小鼠焦虑样行为中的效应研究	赵枫 258
1912-乙酰基-4-四羟基丁基咪唑(THI)对 Jurkat 细胞迁移的影响	赵喆 260
继续教育培训摘要	261
192化妆品消费者暴露影响因素和评估方法	何志妮 261
193化妆品内暴露评估: 从体内到体外的外推	高原 262
194基于生理的毒代动力学模型(PBTK)在化学物风险评估中的应用	何俊 263
195化妆品风险评估技术的发展及应用	罗飞亚 264
196HiPSC-CMs 在心脏毒性体外测试中的应用	陈淼 265
197替代方法的整合测试策略及在风险评估中的应用	陈励藻 266
198计算机毒理模型及交叉参照	李津 267

摘自: 会议论文集